Reconstitution of the human U snRNP assembly machinery reveals stepwise Sm protein organization.

نویسندگان

  • Nils Neuenkirchen
  • Clemens Englbrecht
  • Jürgen Ohmer
  • Thomas Ziegenhals
  • Ashwin Chari
  • Utz Fischer
چکیده

The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo. These trans-acting factors enable the faithful delivery of seven Sm proteins onto snRNA and the formation of the common core of snRNPs. To gain mechanistic insight into their mode of action, we reconstituted the assembly machinery from recombinant sources. We uncover a stepwise and ordered formation of distinct Sm protein complexes on the PRMT5 complex, which is facilitated by the assembly chaperone pICln. Upon completion, the formed pICln-Sm units are displaced by new pICln-Sm protein substrates and transferred onto the SMN complex. The latter acts as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to prevent mis-assembly and to ensure the transfer of Sm proteins to cognate RNA. Investigation of mutant SMN complexes provided insight into the contribution of individual proteins to these activities. The biochemical reconstitution presented here provides a basis for a detailed molecular dissection of the U snRNP assembly reaction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional organization of the Sm core in the crystal structure of human U1 snRNP.

U1 small nuclear ribonucleoprotein (snRNP) recognizes the 5'-splice site early during spliceosome assembly. It represents a prototype spliceosomal subunit containing a paradigmatic Sm core RNP. The crystal structure of human U1 snRNP obtained from natively purified material by in situ limited proteolysis at 4.4 Å resolution reveals how the seven Sm proteins, each recognize one nucleotide of the...

متن کامل

Conserved domains of human U4 snRNA required for snRNP and spliceosome assembly.

U4 snRNA is phylogenetically highly conserved and organized in several domains. To determine the function of each of the domains of human U4 snRNA in the multi-step process of snRNP and spliceosome assembly, we used reconstitution procedures in combination with snRNA mutagenesis. The highly conserved 5' terminal domain of U4 snRNA consists of the stem I and stem II regions that have been propos...

متن کامل

Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy.

Spinal muscular atrophy (SMA) is a neurodegenerative disease of spinal motor neurons caused by reduced levels of functional survival of motor neurons (SMN) protein. SMN is part of a macromolecular complex that contains the SMN-interacting protein 1 (SIP1) and spliceosomal Sm proteins. Although it is clear that SIP1 as a component of this complex is essential for spliceosomal uridine-rich small ...

متن کامل

Essential role of a trypanosome U4-specific Sm core protein in small nuclear ribonucleoprotein assembly and splicing.

Spliceosomal small nuclear ribonucleoproteins (snRNPs) in trypanosomes contain either the canonical heptameric Sm ring or variant Sm cores with snRNA-specific Sm subunits. Here we show biochemically by a combination of RNase H cleavage and tandem affinity purification that the U4 snRNP contains a variant Sm heteroheptamer core in which only SmD3 is replaced by SSm4. This U4-specific, nuclear-lo...

متن کامل

Spliceosomal U snRNP core assembly: Sm proteins assemble onto an Sm site RNA nonanucleotide in a specific and thermodynamically stable manner.

The association of Sm proteins with U small nuclear RNA (snRNA) requires the single-stranded Sm site (PuAU(4-6)GPu) but also is influenced by nonconserved flanking RNA structural elements. Here we demonstrate that a nonameric Sm site RNA oligonucleotide sufficed for sequence-specific assembly of a minimal core ribonucleoprotein (RNP), which contained all seven Sm proteins. The minimal core RNP ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 34 14  شماره 

صفحات  -

تاریخ انتشار 2015